Newsflash

The drive for lightweight materials to reduce overall cost and environmental impact for automotive manufacturers is nothing new.  Fuel economy attracts car buyers too. That is how majority of steel parts have been replaced in F-150 pickup truck by aluminum parts, reducing overall weight over 500 pounds. Then there are alloys, carbon fiber and plastics composites.The ambition for lighter vehicles did not stop with alloys (magnesium, aluminum), and/or composites (glass, carbon fibers).  Recently, Japanese researchers at Kyoto University led by Professor Hiroaki Yano along with its industrial partners (Denso Corporation and Daikyo-Nishikawa Corporation) reported that they were developing cellulose nanofiber based materials for automotive as well as aircraft parts to reduce environmental footprint while increasing product performance.Inevitable questions are: 1) would these materials be cost effective? 2) What would be the service life of these products compared to the current ones? 3) How about the parts’ safety in situations like crash or fire?A final question that an automaker has to ask is: what would be the pay back time to replace current production line (machinery) to CNF based plastics line?Reference: https://www.japantimes.co.jp/news/2017/08/15/business/researchers-japan-use-wood-make-cellulose-nanofiber-auto-parts-stronger-lighter-metal/#.WbAIKeTXuUm...
We know polycarbonates mostly from its use in plastics water bottles, safety goggles, smart phones, structural panels (glazing) and the list goes on.  A quick look at Wikipedia gives a spectrum of applications.However, polycarbonates have its weaknesses along with the BPA (bis-phenol) controversy. Polymers such as polysulfates and polysulfonates have similar if not better mechanical properties than polycarbonates.  The issue has been how reliably scale-up the manufacturing process of polysulfates and polysulfonates?“Click chemistry” is a concept in organic chemistry by which highly reactive reactions provide high yielding products and require little to no purification.  The concept was introduced by Nobel Prize winner Professor K. Barry Sharpless in 2001.A recent work published in Nature Chemistry, by a team of researchers from The Scripps Research Institute (La Jolla), Lawrence Berkley National Laboratory (Berkley), California and Shanghai Institute of Organic Chemistry & Soochow University, China claimed that reduced cost of catalyst, product purity, and by-product recycling make their work ready to move from laboratory research to industrial process.Chemists are at work indeed!References:https://en.wikipedia.org/wiki/PolycarbonateK. Barry Sharpless et al; Nature Chemistry, 2017 DOI: 10.1038/nchem.2796...
In a recent The Atlantic interview Bill Gates made a wish on an energy miracle, “Here’s a source of energy that is cheaper than your coal plants, and by the way, from a global-pollution and local-pollution point of view, it’s also better”.  The race is on to find that source. One such energy source is solar energy. We all know that solar energy can be harnessed to generate thermal energy or electrical energy for use in the residential and/or in the commercial applications.  Any material that can store Solar Thermal Energy is called Solar Thermal Fuel (STF).  The quest to harvest solar energy, store the same and use it when needed has been the focus of research in industry and academia alike. For the first time, Professor Grossman’s team at MIT, Cambridge (USA) has come up with a new approach which uses polymer Solar Thermal Fuel (STF) storage platform utilizing STF in its solid-state.  According to the published article, researchers stated, “Closed cycle systems offer an opportunity for solar energy harvesting and storage all within the same material. This approach enables uniform films capable of appreciable heat storage of up to 30 Wh kg?1 and that can withstand temperature of up to 180 °C.”How the STF process works?Certain molecules (chemicals) can have 2 different stable structural forms. These structures are called conformations.  When original molecular conformation is exposed to sunlight, the molecule gets charged and the original conformation changes to the other and stay in that charged conformation for a long period.  The charged molecule snaps back to their original shape (conformation), when triggered by a very specific temperature or other stimulus generating heat in the process. Currently, developed polymeric film can release heat about 10 degree C above the surrounding temperature. Film property improvements are underway. German auto company BMW, has sponsored this research. Where the potential application lies - your guess is as good as mine.References:The Atlantic, p 56, November 2015Zhitomirsky, D., Cho, E. and Grossman, J. C. (2015), Solid-State Solar Thermal Fuels for Heat Release Applications. Adv. Energy Mater., 1502006. doi:10.1002/aenm.201502006...
In a recent The Atlantic interview Bill Gates made a wish on an energy miracle, “Here’s a source of energy that is cheaper than your coal plants, and by the way, from a global-pollution and local-pollution point of view, it’s also better”.  The race is on to find that source. One such energy source is solar energy. We all know that solar energy can be harnessed to generate thermal energy or electrical energy for use in the residential and/or in the commercial applications.  Any material that can store Solar Thermal Energy is called Solar Thermal Fuel (STF).  The quest to harvest solar energy, store the same and use it when needed has been the focus of research in industry and academia alike. For the first time, Professor Grossman’s team at MIT, Cambridge (USA) has come up with a new approach which uses polymer Solar Thermal Fuel (STF) storage platform utilizing STF in its solid-state.  According to the published article, researchers stated, “Closed cycle systems offer an opportunity for solar energy harvesting and storage all within the same material. This approach enables uniform films capable of appreciable heat storage of up to 30 Wh kg?1 and that can withstand temperature of up to 180 °C.”How the STF process works?Certain molecules (chemicals) can have 2 different stable structural forms. These structures are called conformations.  When original molecular conformation is exposed to sunlight, the molecule gets charged and the original conformation changes to the other and stay in that charged conformation for a long period.  The charged molecule snaps back to their original shape (conformation), when triggered by a very specific temperature or other stimulus generating heat in the process. Currently, developed polymeric film can release heat about 10 degree C above the surrounding temperature. Film property improvements are underway. German auto company BMW, has sponsored this research. Where the potential application lies - your guess is as good as mine.References:The Atlantic, p 56, November 2015Zhitomirsky, D., Cho, E. and Grossman, J. C. (2015), Solid-State Solar Thermal Fuels for Heat Release Applications. Adv. Energy Mater., 1502006. doi:10.1002/aenm.201502006...
Reliable and high performance lithium ion batteries commonly known as LIBS are highly sought after product by industries. We all have heard stories about laptops, electric vehicles, airplanes catching fires due to LIBS. Underlying problem is the battery overheating. Preventing batteries from overheating is crucial to the public safety.  Now a team of researchers at Stanford University designed a thermo-responsive (heat sensitive) plastic composite film made from polyethylene and spiky nickel microparticles coated with graphene which shuts down the battery if the temperature is too high.         In a recently published work led by Yi Cui and Zhenan Bao of Stanford University, USA concluded “Safe batteries with this thermoresponsive polymer switching (TRPS) materials show excellent battery performance at normal temperature and shut down rapidly under abnormal conditions, such as overheating and shorting.” How practical this design approach is? Time will tell.References: Y. Cui, Z. Bao et al Nature Energy vol.1, Article number: 15009 (2016); DOI: 10.1038/nenergy.2015.9Chemical & Engineering News, Page 7, January 18, 2016...
In aviation industry, the focus is how to improve fuel safety and handling. Mike Jaffe and Sahitya Allam gave their perspective on safer fuels by integrating polymer theory into design (Science, 350, No. 6256, p. 32, 2015).Mist (generated from the fuel) is much more flammable than the liquid and that is why anti-misting kerosene interferes with mist formation when a low percentage of a polymer is added into it.  The problem however, is that the polymer chain undergoes scission during handling and can’t assist in suppressing mist formation. The answer comes from a recent paper published in the Journal Science by Professor Julia Kornfield and her cross-functional team at Caltech, Pasadena, USA. The group designed a megasupramolecules having polycyclooctadiene backbones and acid or amine end groups (telechelic polymer) which is short enough to resist hydrodynamic chain scission while protecting covalent bonds through reversible linkages. Yes, polymers can be designed to suit our societal needs including aviation fuel safety.Reference: M-H Wei, B. Li, R.L. Ameri David, S.C. Jones, V. Sarohia, J.A. Schmitigal and J.A. Kornfield; Science, 350, (6256), pp. 72-75 (2015)...
At the TED conference, Carbon3D, a Vancouver based company touted a radical 3D printing technology and named it CLIP or Continuous Liquid Interface Product. CLIP grows parts instead of printing them layer by layer. It harnesses light and oxygen to continuously grow objects from a pool of resin.  The result: make commercial quality parts at game-changing speed.  CLIP is 25 to 100 times faster than traditional 3D printing technique.  To make the point, Carbon3D web site provides a head-to-head comparison of CLIP to Polyjet, SLS and SLA.[Press release: March 16, 2015, Vancouver, Canada.  www.carbon3D.com]...
Self-healing plastics has been around for a while. Applications include self-healing medical implants, self-repairing materials for use in airplanes and spacecrafts. Even scientists have made polymeric materials that can repair itself multiple times. A recent report in Science describes a significant advance in self-healing plastics. The authors describe a product that mimics how blood can clot to heal a wound. When the plastic is damaged a pair of pre-polymers in channels combines and rapidly forms a gel, which then hardens over 3 hours.The authors demonstrated that holes up to 8 millimeters wide can be repaired. The repaired parts can absorb 62% of the total energy absorbed by undamaged parts.  Science never stops.Reference:S. R. White, J. S. Moore, N. R. Sottos, B. P. Krull, W. A. Santa Cruz, R. C. R. Gergely; Science, Restoration of Large Damage Volumes in Polymers, Vol. 344 no. 6184 pp. 620-623; (9 May 2014). ...
Knowingly or unknowingly, flexible electronics has become a part of our daily life.  Transparent conductive films (TCFs) are used in mobile phones, tablets, laptops and displays.  Currently, Indium Tin Oxide or commonly known as ITO is the material of choice.  But use of ITO has some major disadvantages and these are brittleness, higher conductivity at greater transparency, and supply of Indium.  This is where non-ITO materials come into play. Based in St. Paul, Minnesota (USA), Cima NaoTech’s uses its SANTETM nanoparticle technology, a silver nanoparticle conductive coating which self-assembles into a random mesh like network when coated onto a flexible substrate such as PET and PC.  According to a recent press release, the company stated SANTETM nanoparticle technology enabled transparent conductors in a multitude markets from large format multi-touch displays to capacitive sensors, transparent and mouldable EMI shielding, transparent heaters, antennas, OLED lighting, electrochromic and other flexible applications.  Cima NanoTech is working with Silicon Integrated Systems Corp. (SIS) of Taiwan and using its highly conductive SANTE FS200TM touch films to develop large format touch screens.References: Press release, San Diego, June 03, 2014; www.cimananotech.com ; http://www.cimananotech.com/sante-technology ; http://www.sis.com/...
In an article appeared today (January 29, 2014) in The Guardian newspaper, Stuart Dredge wrote, “From jet parts to unborn babies, icebergs to crime scenes, dolls to houses: how new technology is shaking up making things”1. Mr. Dredge was speaking about 3D printing technology.  The heart of this technology is the 3D printer itself. Stratasys, a company headquartered in Minneapolis, USA is the manufacturer of 3D printers.  It recently announced the launch of Color Multi-material 3D Printer, the first and only 3D printer to combine colors with multi-material 3D printing.  According to the press release2, by using cyan, magenta, and yellow, multi-material objects can be printed in hundreds of colors.  The technology is based on proven Connex technology.  While the base materials are plastics and elastomers, they can be combined and treated to make finished products of wide ranging flexibility and rigidity, transparency and opacity.  Designers, engineers and manufacturers can create models, mold, and parts that match the characteristics of the finished production part. This includes achieving excellent mechanical properties.  According to the manufacturer, print job in the newly revealed printer can run with about 30 kg of resin per cycle and prints as fine as 16 micron layers for models.  No wonder why some call the new Color Multi-material 3D printer a groundbreaking stuff.References: 1. www.theguardian.com.technology/2014/jan/29/3d-printing-limbs-cars-selfies (January 29, 2014)2. http://investors.stratasys.com/releasedetail.cfm?ReleaseID=821134 (August 3, 2014)...
Instead of stitches or skin staples, doctors use skin glue to close wounds. The glue joinsthe edges of a wound together while the wounds heal underneath. Most of the timeskin glue is used for simple cuts or wounds. According to the paper published inScience Translational Medicine, there are no clinically approved surgical glues thatare non-toxic, bind strongly to tissue, and work well in wet and highly dynamicenvironments within the body. This is the reason why this published work is promisingwhere infants born with heart defects would benefit tremendously. Researchers at the Brigham and Women’s hospital in Boston have engineered ‘bio-inspired’ gluethat can bind strongly to tissues on demand, and work well in the presence ofactively contracting tissues and blood flow. The authors of the paper show howthe glue can effectively be used to repair defects of the heart and blood vessels during minimally invasive procedures. [References: P. J. del Nido et al; Sci. Transl. Med., DOI: 10.1126/scitranslmed.3006557; See also, www.geckobiomedical.com/news/gecko-biomedicals-co-founde.html]...
Stability of organic electronics in water is a major research challenge. For this reason,organic electronics has yet to see any sensing application in aqueous environment.However, as understanding of underlying mechanism of stability aspect is becomingclearer, new developmental efforts to make water compatible organic polymer devicesare taking place. Recently, Professor Zhenan Bao’s group in the department of chemical engineering at Stanforduniversity revealed in a paper published in the journal of Nature Communications thatsolution- processable organic polymer could be stable under both in freshwater andin seawater. Developed organic field-effect transistor sensor is able to detect mercury ionsin the marine environment (high salt environment). Researchers believe that the work hasthe potential to develop inexpensive, ink-jet printed, and large-scale environmental monitoring devices. [References: O. Knopfmacher, M.L. Hammock, A.L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei,and Z. Bao; Nature Communications, 5, 2954, January 6, 2014; DOI: 10.1038/ncomms3954]...
Insulin, the wonder medicine for diabetes was discovered about a century ago.Since insulin does not get into the blood stream easily, diabetes patients oftenhave injected themselves with insulin. Now a group of scientists led by Dr. Sanyog Jainat the Center for Pharmaceutical Nanotechnology of National Institute of Pharmaceutical Education and Research in Punjab, India has designed a polymerbased package for oral insulin administration. The package design addresses two major obstacles, 1) digestive enzymes must notdegrade insulin prior to its action and 2) the insulin gets into the blood stream.The package contained folic acid functionalized insulin loaded in liposomes.To protect the liposomes (lipids or fat molecules) they were alternately coated withnegatively charged polyacrylic acid (PAA), and positively charged poly allylamine hydrochloride. Studies were conducted to compare the efficacy of bothdelivery systems: designed polyelectrolyte based insulin and standard insulinsolution. Effects of oral administration lasted longer than that of injectedinsulin, authors reported in a recent article in Biomacromolecules. [Reference: A.K. Agarwal, H. Harde, K. Thanki, and S. Jain; Biomacrmolecules, Nov. 27, 2013;DOI: 10.1021/bm401580k]...
Research in the area of stretchable electronics is heating up!  Thanks to polymers. Led by Professor George M. Whitesides of Harvard University (USA), a team of researchers have demonstrated in a recently published paper in Science that ionic conductors can be used in devices requiring voltages and frequencies much higher than commonly associated with devices using ionic conductors.  The team showed for the first time that electrical charges carried by ions and not electrons, can be utilized in fast-moving, high voltage devices.As a proof of concept, the authors of the study built a transparent loudspeaker that produces sound across the full audible range i.e., 20 Hz to 20 kHz.  Components [such as VHB 4910 tape (acrylic tape with PE liner), polyacrylamide hydrogel containing NaCl electrolyte] used for the high speed, transparent actuators are described in the paper.Tissues and cells are soft and require stretchable conductors for biological systems. Many hydrogels are biocompatible which makes this work particularly an important one. The design of gel-based ionic conductors is highly stretchable, completely transparent and offer new opportunities for designers of soft machines.   [Reference: C.Keplinger, J-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, and Z. Suo; Science, 341 (6149), pp. 984-987 (2013); DOI: 10.1126/science.1240228]...
Interweaving biological tissue with functional electronics, one can make bionic ears.  NASA has tested 3D-printed rocket engine part.  Then why not 3D print yourself?Well, Twinkind, a German start-up company is now offering enthusiasts statues of themselves for display.  How this works?  A full body scanner takes an image of the customer’s body, transfers the file to the printer after which 3D printer laser sinters a composite powder layer by layer into the customer image.Can we dare to say that Madame Tussauds wax figure of Voltaire can now be 3D printed in polymers soon!  [Reference: www.twinkind.com ]...
Polymer membranes have become a leading contender in numerous separation processes.  Be it in gas (air, hydrogen etc.) or be it in water purifications (salinated water, waste water etc.).  Not only polymer membrane technology helps reducing the environmental impact but also it is cost-effective.  Fracking in shell gas is one of many examples. New advances in drilling technology (such as horizontal drilling) have led to new hydraulic fractures called fracking.  Hydraulic fracturing requires about 2.5 to 5 million gallons of water per well.  Water management and its disposal are major costs for producers.One major challenge, however, of the membrane technology is the fouling (damage caused by contaminants) mitigation.  This has been recently studied by a group of researchers from University of Texas at Austin led by Professor Benny Freeman to address efficiency and reuse of water for fracking in shale gas plays.Researchers modified polydopamine coated UF (ultrafiltration) module by grafting polyethylene glycol brushes onto it.  The result is more hydrophilic surfaces which in turn improved cleaning efficiency relative to unmodified modules. The coating improves the membrane life, and can easily be applied to membrane surface by rinsing it through the recycling system.[References: D.J. Miller, X. Huang, H. Li, S. Kasemset, A. Lee, D. Agnihotri, T. Hayes, D.R. Paul, and B. Freeman; J. Membrane Sci., 437, pp. 265-275 (2013); Also see www.advancedhydro.net ]...
Flexible electronics can change the way we use electronic devices.  It is a term used for assembling electronic circuits by mounting electronic devices on a flexible plastic. A recent review article captured the advancement of CNT and graphene based flexible thin film transistors from material preparation, device fabrication to transistor performance control compared to traditional rigid silicon1. Silicon is used almost exclusively in electronic devices.Now Prof. Ali Javey led a team at the University of California, Berkley to develop a printing process to make nanotube transistors at room temperature with gravure printer.  The plastics used is polyethylene terephthalate (PET). The device exhibited excellent performance with mobility and on/off current ratio of up to ~9 cm2/ (V s) and 105 respectively.  Also, maximum bendability is observed.  The paper authors conclude that this high-throughput printing process serves as enabling nanomanufacturing scheme for range of large-area electronic applications based on nanotube networks2. References:1. D-M. Sun, C. Liu, W-C. Ren and H-M Cheng; Small, DOI: 10.1002/smll.2012031542. P.H. Lau, K. Takei, C. Wang, Y. Zu, J. Kim, Z. Yu, T. Takahashi, G. Cho, and Ali Javey; Nano Letters, 13 (8), pp. 3864-3869 (2013); DOI. 10.1021/nl401934a...
Drinking coffee from paper cups are as common as drinking water from plastics bottle. The issue however, is recycling of disposable cups. The disposable cups are made up of 90-95% of high strength paper (fibers) with a 5% thin coating of plastic (PE).To address the recycling issue, James Cropper Speciality Papers of UK have developed a process which involves softening the cup waste, and separating the plastic coating from the fiber.  After skimming off the plastic, remains are pulverised and recycled, leaving water and pulp behind.  According to the company news release, the high grade pulp is reused in luxury papers and packaging materials.An innovative approach to address a common problem.[Reference: www.jamescropper.com/news ]...
A search for an alternative to rigid silicon wafers gave birth to the area of flexible or bendable electronics. Research has been intense for the past few years in the area flexible electronics as it opens up multitude of new applications. Polymers play an important role to exciting field of flexible electronics.In a recent research report, a team of scientist led by Prof. Ali Javey of University of California, Berkeley (USA)  has shown for the first time user-interactive electronic skin or e-skin can conformally wrap irregular surfaces and spatially map and quantify various stimuli through a built-in active matrix OLED display.  Three electronic components namely thin film transistor (uniform carbon nanotube based), pressure sensor, and OLED arrays (red, green, and blue) are integrated over a plastic substrate.  Spin coated and cured polyimide on a silicon wafer is used as the flexible substrate.  Details are in the paper.This work essentially provides a technology platform where integration of several components (organic and inorganic) can be done at a system level on plastic substrates. According to the paper, this e-skin technology could find applications in interactive input/control devices, smart wallpapers, robotics, and medical/health monitoring devices.    [Ref: C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, and Ali Javey; Nature Materials, Published online July 21, 2013; DOI: 10.1038/NMAT3711]...
Recent buzz in the technology world is 3D printing.  Researchers to designers are creating new products everyday using 3D printing technology.  Even eBay has unveiled its services to those looking to make their own creations using 3D printing App.Since ages composites have played a crucial role in our society. Inspired by natural (biological) composites such as bone or nacreous abalone shell, researchers from MIT (USA) and Stratasys have developed composite materials that have fracture behaviour similar to bones.  Using computer model with soft and stiff polymers, the team has come up with a specific topological arrangements (hierarchical structures) of polymer phases to boost the mechanical behaviour in the composites.Interestingly, the team has been able to manufacture (thanks to 3D printing) a composite material that is more than 20 times larger than its strongest constituent.  The referenced paper showed that one can use computer model to design composite materials of their choice, tailor the fracture pattern and then use 3D printing technology to manufacture the composites.[Ref: L.S. Dimas, G.H. Bratzel, I. Eylon, and M.J. Buehler; Advanced Functional Materials, Published online June 17, 2013; DOI: 10.1002/adfm.201300215]...

encapsulated_flavours Additives are crucial to plastics formulations. Specialty additives are one of the most dynamic segments of the plastics industry. A specialty additive insight that occurs suddenly and unexpectedly is a flash of inspiration. Knowledge or insight gained by looking into the future of polymer formulation is helpful. A sudden burst of insight about the future will produce a new and radically different way of using advanced plastic additive solutions that will open up hidden product development opportunities. Let’s tour eight key polymer additive segments and explore sixteen trends of the future!

Additives for Packaging

Fragrance and Flavor Packaging Enhancement

ScentSational Technologies, which develops/licenses olfaction packaging technologies, has introduced CompelAroma which uses ‘Encapsulated Aroma Release’ technology to add particularly engineered food grade flavors to a plastic packaging structure to enhance a product‘s aroma profile. For example, CompelAroma contained in package walls or liners can appreciably extend the period of time that a package such as coffee remains on the shelf by maintaining a desirable aroma. ScentSational has also created technology to incorporate fragrance and flavor in single serve beverage container closures/closure liners designed to be consumed directly from the bottle. The technology allows the beverage bottle headspace to be filled with aromas that provide a greater consumer experience. ScentSational technology is also being used to add fragrance to the closures of shampoo, laundry detergents, and other cleaning, health and beauty products to allow consumers to sample a product's scent, without disturbing the product seal.


Packaging Film Advanced Slip and Antiblock Additives

Slip and antiblock additives are widely used to modify the surface of polymer film and sheet to facilitate performance in fabrication, packaging, and/or end-use applications. Without their use most film would be hard to process, as the material would otherwise not slide readily over itself or other surfaces in converting, packaging, and printing equipment. Film layers have a tendency to adhere when pressed together during processing or on being stacked after cutting. A range of slip and antiblock additives are available including primary, secondary, non-migratory, and other slips, in addition to organic and inorganic antiblocks, and diverse slip–antiblock combinations. In many applications such as single and multilayer bags, wrap and other packaging these additives must have the appropriate food contact approvals. While often added directly by the resin producer, slip and antiblocks are most commonly added by the processor via a range of masterbatches to adapt additive levels to the application.
Biopolymers provide new market prospects for packaging additives such as slips and antiblocking materials. Many of the emerging biopolymers are particularly tacky and tend to stick to themselves and to metal take-up rolls and other surfaces involved in processing. A critical factor for PLA (polylactic acid) additives is compatibility with the resin to maintain clarity. Furthermore some companies like Metabolix and Meredian say they will only use biobased additives with their resins. Clariant Masterbatches has developed new CESA-slip and CESA-block masterbatches for biopolymers like PLA employed by the packaging and film industry. Its CESA-naturslip additives, based on pure naturally occurring waxes such as beeswax, have minimal impact on transparency and give very good slip properties with a coefficient of friction (CoF) close to that achieved by modern synthetic waxes.

clariant_fig2

Sukano slip/antiblock masterbatches for PLA film and sheet (dc S511) include optical brighteners. They have food contact certification and are also approved as suitable for composting. Additionally PolyOne’s OnCap Bio additive masterbatches include slip and antiblock masterbatches designed for specific use with biodegradable resins such as PLA. Ampacet Corporation is another masterbatch provider that has developed slip and antiblock concentrates for PLA and PHA.

Biobased Solutions

Renewably Sourced PET

The world’s first global bio-PET integrated supply chain is being established by Toyota Tsusho. The supply chain includes procurement of bio-ethanol, production of bio-mono ethylene glycol (bio-MEG), PET tolling, and bio-PET marketing. Braskem will supply the bio-ethanol from Brazil. Greencol Taiwan Corp (GTC), a 50/50 JV between Toyota Tsusho and China Man-Made Fiber Corporation, will produce bio-MEG using the sugar-based ethanol as feedstock. Greencol will produce the bio-MEG in a new facility in Kaohsiung, Taiwan. The bio-MEG will be handled/ supplied by Toyota Tsusho to PET toll manufacturers in Asia. The off-take of bio-PET from toll manufacturers will be marketed by Toyota Tsusho to end-users in Japan, Europe and the US. The companies expect to toll-produce and sell 200,000 tons/year of bio-PET.

bio_pet_figure3

Global Bio-PET Supply Chain; [Source: Toyota Tsusho]


Non-Food Sourced High Performance Bioplastic

A durable new high performance bioplastic developed by NEC is suitable for plastic components for electronic equipment. This first-of-its kind durable new bioplastic is produced from stable non-edible plant resources. It is based on cellulose from plant stems and cardanol, a primary component of cashew nut shells. The plant stems and nut shells are abundant resources often discarded as byproducts of the agricultural processing industry. Use of these non-edible plant sources as the main components of the new bioplastic will therefore have little or no impact on the production of food crops. Cashew nuts are widely cultivated in India and Vietnam and NEC says it is assured of a stable supply of cardanol. The durable bioplastic boasts a high plant composition ratio of more than 70%. Other cellulose based plastics are typically heavily loaded with petroleum based plasticizers which results in a bioplastic with a low plant component ratio and poor durability including insufficient heat and water resistance or are blended with petroleum based plastics to improve strength and thermal resistance. Cardanol has a unique molecular structure that consists of a rigid phenol component and a flexible, hydrophobic, linear hydrocarbon component. Cellulose is the main ingredient of the bioplastic and is bonded with the oil-like cardanol which has been modified to enhance its reactivity.

cashew_nut_figure4Cellulose / Cardanol Based Bioplastic; [Source: NEC]

NEC’s new bioplastic has important advantages compared to PLA and cellulose acetate as follows:
•    Its molding time is <50% that of PLA and comparable to conventional cellulose-based and petroleum-based plastics
•    More than twice the heat resistance of PLA and 1.3 times that of cellulose acetate
•    Twice the strength of existing PLA and comparable strength to conventional cellulose acetate
•    Water resistance is comparable to PLA and approximately 3 times better than cellulose acetate


cardanol_figure5Cellulose / Cardanol Based Bioplastic (Green Bar) Performance Features; [Source: NEC]

 

NEC expects the new bioplastic to be commercialized by shortly at a price lower than PLA and competitive with petroleum based plastics. NEC believes the durability achieved by the new bioplastic will make it highly suitable for electronics applications.

Bioplastics Formulation

Open Source Strategy to Spur Injection Molded Bioplastics Development

A page is being taken from the computer industry to spur innovation and drive biopolymers more widely into injection molding applications. NatureWorks is making formulation and compounding procedures for its high-heat resistant, high impact, bioresin Ingeo 3801X openly available. The company has ‘drawn back the curtain’ on development of the grade to share the technology and provide transparency on how the solution was arrived at including what was used to tailor properties/processing characteristics and why. Information is also openly available for high heat formulation Ingeo HHIM 670-82-01. With formulation in hand, independent specialty resin companies and brand owners with captive operations will be in a position to use Ingeo as the foundation for biobased injection molded products and components. NatureWorks also expects the details of the formulation can serve as a basis for R&D in further tailoring biobased solutions for the semi-durable plastics market. The company has also taken a similar ‘pull-back-the-curtain’ approach with its foam grade material, 8051D, but as that grade had just a small group of potential users it was done on a more one-to-one basis. NatureWorks is now also offering for sale a range of polymer-grade lactides. Lactide partners can also take advantage of a new Ingeo licensee package. Under select terms, the company will supply access to trademarks and application patents needed to support and enable the wider adoption of Ingeo biopolymers.


ingeo_figure6

Ingeo Injection Molding Compound Formulation; [Source: NatureWorks]


Heat Resistant Plant Based PLA Molding Compound

Highly heat resistant PLA Molding compound MBA900H co-developed by Panasonic Electric Works and Teijin Ltd. is composed of 80% plant-based renewable feedstock. The compound has significantly reduced molding cycle time around half that of conventional PLA compounds. Conventional PLA has low heat resistance and limited injection-molding capability because of its longer molding cycle time. Other molding compounds have been developed by mixing PLA with petroleum based plastics but attaining the desired levels of heat resistance and moldability has required a high ratio of oil based plastic. In Teijin’s‘Biofront’ bioplastic, a highly heat resistant PLA is used in the compound. Teijin’s Biofront stereo-complex PLA has a melting point of approximately 210ºC, significantly higher than that of conventional PLA. It also shows better hydrolytic stability and achieves semi-crystallization in just 20-25% of the time required with conventional PLA. The stereo-complex PLA made with conventional ‘left handed’ poly-L-lactic acid combined with its ‘right-handed poly-D-lactic acid that has much higher heat resistance. 8Biofront PLA of 50/50 L and D lactides achieves a semicrystalline resin with a melting point 40ºC higher than conventional PLA, and on a par with the heat resistance of petroleum-based PBT. Panasonic Electric Works’ proprietary compound-design and production technologies were also used in the development. The compound will initially be used in the housings of cell phones and other mobile devices and digital consumer electronics. Panasonics’ initial goal is 1000 tons annual production. Teijin operates a Biofront demonstration plant with a capacity of 1000 tons/year and expects to increase its capacity to 5,000 tonnes/year.

panasonic_figure7

Comparison of Molding Cycle Time (Red, Biobased MBA900H); [Source: Panasonic Electric Works, PEW]


Formulations and Transparency

Solasorb Inorganic UV Light Absorber

Solasorb, a novel type of inorganic UV light absorber from Croda Polymer Additives is based on ultra fine metal oxides (TiO2 and ZnO) that provide stable dispersion, low migration, and long-term protection. In comparison to traditional nanoparticle additives, this UV protection material is said to deliver:
•    Low migration
•    Long-term UV protection
•    Greater dispersion
•    Minimal effect on transparency
Careful particle size control yields good UV absorbance coupled with significantly improved transparency compared to other metal oxide powders. Its use in plastics for packaging applications reduces color change in cosmetics and personal care products and prevents vitamin loss, development of off-tastes and odors in beverages.


croda_figure8


NanoArc ATO Infrared Protection

NanoArc Antimony Tin Oxide (ATO) nanoparticle additives by Nanophase Technologies Corporation can be incorporated into clear film and sheet to absorb IR but not visible light. It provides this benefit by absorbing energy in the near-IR region and reflecting energy at longer IR wavelengths, while maintaining excellent transparency in the visible region. In products like skylights it prevents heating of interior space. The incorporation of NanoArc ATO into surface coatings is an effective means of managing radiant heat without adversely impacting the optical clarity or other desirable physical properties of the article on which it is applied.


nanophase_figure9

To be continued ........

Donald V. Rosato, Ph.D.

Dr. Donald V. “Don” Rosato of PlastiSource Inc. has been actively involved with plastics, moving from aerospace development to leading resin suppliers from the late ‘60s to early ‘90s, before starting his own 20 year old prototype manufacturing, product development, and technical market advisory firm. He was involved with firsts developing the Apollo 11/12/13 composite moonship legs, America’s Cup/Olympic luge/bobsled parts, PET & recycled PVC bottle manufacturing, barrier packaging, super-tough nylons, engineered plastic blends/alloys, high performance LCPs & related ultra-resins, DARPA/ARPA aerospace/defense/alternative energy electronics, biocomposites/green resins, greenbuilding/LEED end uses, electrically/thermally conductive polymers, specialty additive compounds, TPEs/synthetic rubbers, advanced molding technologies, and clean thermoset resins. He continues into his 6th decade to author/present multiple global webinars, papers and books, analytical reports, and online plastic columns.

Don has wide-ranging technical and marketing plastic industry experience from product development, through production, to marketing, having worked for Northrop Grumman, Owens-Illinois/Graham, DuPont/Conoco, Celanese/Ticona, and Borg Warner/G.E. Plastics. He has developed numerous polymer related patents, participates in many trade groups (SPE, SPI, PIA, CPPIA, SAMPE), and is involved in these areas with PlastiSource, Inc. He earned his BS Chemistry, Boston College; MBA, Northeastern University; M.S. Plastics Engineering, University of Massachusetts Lowell; Ph.D. Business Administration, University of California, Berkeley, and has extensive executive management training.